资源类型

期刊论文 1186

年份

2024 3

2023 117

2022 111

2021 101

2020 89

2019 76

2018 73

2017 58

2016 47

2015 64

2014 49

2013 33

2012 24

2011 36

2010 38

2009 53

2008 32

2007 46

2006 10

2005 12

展开 ︾

关键词

高速铁路 14

高质量发展 8

创新 5

关键技术 4

技术体系 4

稳定性 4

三峡工程 3

二氧化碳 3

京沪高速铁路 3

发展 3

高压 3

中国高速铁路 2

产业发展 2

冲击波 2

勘探开发 2

增材制造 2

指标体系 2

显微硬度 2

有色金属工业 2

展开 ︾

检索范围:

排序: 展示方式:

Product identification and toxicity change during oxidation of methotrexate by ferrate and permanganate in water

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1501-8

摘要:

• Oxidation of methotrexate by high-valent metal-oxo species was first explored.

关键词: Anticancer drugs     High-valent metal-oxo species     Oxidation kinetics     Reaction mechanisms     Multi-endpoint toxicity    

Nanoscale Zero-Valent Iron (nZVI) for Heavy Metal Wastewater Treatment: A Perspective

Shaolin Li,Lei Li,Weixian Zhang,

《工程(英文)》 doi: 10.1016/j.eng.2023.08.012

摘要: Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater (HMW) worldwide annually, posing a severe challenge to conventional wastewater treatment plants and harming the environment. HMW is traditionally treated via chemical precipitation using lime, caustic, or sulfide, but the effluents do not meet the increasingly stringent discharge standards. This issue has spurred an increase in research and the development of innovative treatment technologies, among which those using nanoparticles receive particular interest. Among such initiatives, treatment using nanoscale zero-valent iron (nZVI) is one of the best developed. While nZVI is already well known for its site-remediation use, this perspective highlights its application in HMW treatment with metal recovery. We demonstrate several advantages of nZVI in this wastewater application, including its multifunctionality in sequestrating a wide array of metal(loid)s (> 30 species); its capability to capture and enrich metal(loid)s at low concentrations (with a removal capacity reaching 500 mg·g–1 nZVI); and its operational convenience due to its unique hydrodynamics. All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry. We also present the first engineering practice of this application, which has treated millions of cubic meters of HMW and recovered tons of valuable metals (e.g., Cu and Au). It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste.

关键词: Nanoscale zero-valent iron     Wastewater     Heavy metal     Resource recovery    

Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese

YANG Shengxiang,LIANG Shichu,YI Langbo,XU Bibo,CAO Jianbing,GUO Yifeng,ZHOU Yu

《环境科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 394-404 doi: 10.1007/s11783-013-0602-4

摘要: Screening plants that are hypertolerant to and excluders of certain heavy metals plays a fundamental role in a remediation strategy for metalliferous mine tailings. A field survey of terrestrial higher plants growing on Mn mine tailings at Huayuan, Hunan Province, China was conducted to identify candidate species for application in phytostabilization of the tailings in this region. In total, 51 species belonging to 21 families were recorded and the 12 dominant plants were investigated for their potential in phytostabilization of heavy metals. Eight plant species, , , , , , , , and accumulated much lower concentrations of heavy metals in shoots and roots than the associated soils and bioconcentration factors (BFs) for Cd, Mn, Pb and Zn were all<1, demonstrating a high tolerance to heavy metals and poor metals translocation ability. The field investigation also found that these species grew fast, accumulated biomass rapidly and developed a vegetation cover in a relatively short time. Therefore, they are good candidates for phytostabilization purposes and could be used as pioneer species in phytoremediation of Mn mine tailings in this region of South China.

关键词: Mn mine tailings     heavy metal accumulation     phytostabilization    

Localized high-concentration electrolytes for lithium metal batteries: progress and prospect

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1354-1371 doi: 10.1007/s11705-022-2286-4

摘要: With the increasing development of digital devices and electric vehicles, high energy-density rechargeable batteries are strongly required. As one of the most promising anode materials with an ultrahigh specific capacity and extremely low electrode potential, lithium metal is greatly considered an ideal candidate for next-generation battery systems. Nevertheless, limited Coulombic efficiency and potential safety risks severely hinder the practical applications of lithium metal batteries due to the inevitable growth of lithium dendrites and poor interface stability. Tremendous efforts have been explored to address these challenges, mainly focusing on the design of novel electrolytes. Here, we provide an overview of the recent developments of localized high-concentration electrolytes in lithium metal batteries. Firstly, the solvation structures and physicochemical properties of localized high-concentration electrolytes are analyzed. Then, the developments of localized high-concentration electrolytes to suppress the formation of dendritic lithium, broaden the voltage window of electrolytes, enhance safety, and render low-temperature operation for robust lithium metal batteries are discussed. Lastly, the remaining challenges and further possible research directions for localized high-concentration electrolytes are outlined, which can promisingly render the practical applications of lithium metal batteries.

关键词: high-concentration electrolyte     localized high-concentration electrolyte     lithium metal battery     solid electrolyte interphase     dendrite    

Species distribution of arsenic in sediments after an unexpected emergent discharge of high-arsenic wastewater

Ruiping LIU, Wei XU, Kun WU, Wenxin GONG, Huijuan LIU, Jiuhui QU

《环境科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 568-578 doi: 10.1007/s11783-013-0514-3

摘要: The unexpected emergent discharge of high-arsenic wastewater into water environments results in significantly increased levels of arsenic in water; however, the species distribution of arsenic in sediments has never been reported before for such cases. This study focuses on an As pollution accident in the Dasha River, and uses sequential extraction procedures with deionized water, 1?mol·L MgCl at pH= 8, 1?mol·L NaH PO at pH= 5, and 1?mol·L HCl to investigate four binding phases of arsenic (i.e., water soluble, ion-exchangeable, strongly-bound, and precipitates) in sediments at different layers in different cross-sections along the river. The average ratio of arsenite (As(III)) to arsenate (As(V)) was found to decrease from 0.74:1 in river water to 0.48:1 in sediment, owing to its higher affinity toward As(V) than As(III). The content of arsenic in the sediments was relatively low and the maximum content was observed to be 36.3?mg·kg for As(III) and 97.5?mg·kg for As(V). As(III) and As(V) showed different binding phases in sediments, and the average fractions of these four species were determined to be 0.09, 0.11, 0.17, and 0.63 for As(III) and 0.03, 0.14, 0.63, and 0.20 for As(V), respectively. For all the sediment samples, the content of arsenic showed no relationship with the characteristics of the sediments such as the particle diameter, the content of organic carbon, Fe, and Mn, although a negative correlation with particle diameter was observed for the sediments in the uppermost 2-cm layer. The unexpected emergent As incident results in the high content of total arsenic in the surface sediment, which may be potential secondary source to the elevated As levels in surface water.

关键词: river sediments     arsenic     species distribution     binding phases     unexpected discharge of high-As wastewater    

Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling

Yuling CAI,Bin LIANG,Zhanqiang FANG,Yingying XIE,Eric Pokeung TSANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 879-887 doi: 10.1007/s11783-014-0764-8

摘要: As a promising in situ remediation technology, nanoscale zero-valent iron (nZVI) can remove polybrominated diphenyl ethers such as decabromodiphenyl ether (BDE209) effectively, However its use is limited by its high production cost. Using steel pickling waste liquor as a raw material to prepare nanoscale zero-valent metal (nZVM) can overcome this deficiency. It has been shown that humic acid and metal ions have the greatest influence on remediation. The results showed that nZVM and nZVI both can effectively remove BDE209 with little difference in their removal efficiencies, and humic acid inhibited the removal efficiency, whereas metal ions promoted it. The promoting effects followed the order Ni >Cu >Co and the cumulative effect of the two factors was a combination of the promoting and inhibitory individual effects. The major difference between nZVM and nZVI lies in their crystal form, as nZVI was found to be amorphous while that of nZVM was crystal. However, it was found that both nZVM and nZVI removed BDE209 with similar removal efficiencies. The effects and cumulative effects of humic acid and metal ions on nZVM and nZVI were very similar in terms of the efficiency of the BDE209 removal.

关键词: steel pickling waste liquor     nanoscale zero-valet metal     nanoscale zero-valent iron     humic acid     metal ion    

High heat flux thermal management through liquid metal driven with electromagnetic induction pump

《能源前沿(英文)》 2022年 第16卷 第3期   页码 460-470 doi: 10.1007/s11708-022-0825-9

摘要: In this paper, a novel liquid metal-based minichannel heat dissipation method was developed for cooling electric devices with high heat flux. A high-performance electromagnetic induction pump driven by rotating permanent magnets is designed to achieve a pressure head of 160 kPa and a flow rate of 3.24 L/min, which could enable the liquid metal to remove the waste heat quickly. The liquid metal-based minichannel thermal management system was established and tested experimentally to investigate the pumping capacity and cooling performance. The results show that the liquid metal cooling system can dissipate heat flux up to 242 W/cm2 with keeping the temperature rise of the heat source below 50°C. It could remarkably enhance the cooling performance by increasing the rotating speed of permanent magnets. Moreover, thermal contact resistance has a critical importance for the heat dissipation capacity. The liquid metal thermal grease is introduced to efficiently reduce the thermal contact resistance (a decrease of about 7.77 × 10−3 °C/W). This paper provides a powerful cooling strategy for thermal management of electric devices with large heat power and high heat flux.

关键词: high heat flux     liquid metal     electromagnetic pump     minichannel heat sink     thermal interface material    

wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under highmetal loading conditions

Mothe Gopi Kiran, Kannan Pakshirajan, Gopal Das

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1073-4

摘要:

An-RBC reactor is highly suited to treat metallic wastewater.

Metal removal is due to sulfide precipitation via sulfate reduction by SRB.

Cu(II) removal was the best among the different heavy metals.

Maximum metal removal is achieved at low metal loading condition.

Metal removal matched well with the solubility product values of respective metal sulfide salts.

关键词: Factorial design analysis     sulfate reducing bacteria     multi-metal solution     heavy metal removal     anaerobic rotating biological contactor reactor     high metal loading.    

Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic

Manli LUO, Jing LIU

《能源前沿(英文)》 2013年 第7卷 第4期   页码 479-486 doi: 10.1007/s11708-013-0277-3

摘要: There is currently a growing demand for developing efficient techniques for cooling integrated electronic devices with ever increasing heat generation power. To better tackle the high-density heat dissipation difficulty within the limited space, this paper is dedicated to clarify the heat transfer behaviors of the liquid metal flowing in mini-channel exchangers with different geometric configurations. A series of comparative experiments using liquid metal alloy Ga68%In20%Sn12% as coolant were conducted under prescribed mass flow rates in three kinds of heat exchangers with varied geometric sizes. Meanwhile, numerical simulations for the heat exchangers under the same working conditions were also performed which well interpreted the experimental measurements. The simulated heat sources were all cooled down by these three heat dissipation apparatuses and the exchanger with the smallest channel width was found to have the largest mean heat transfer coefficient at all conditions due to its much larger heat transfer area. Further, the present work has also developed a correlation equation for characterizing the Nusselt number depending on Peclet number, which is applicable to the low Peclet number case with constant heat flux in the hydrodynamically developed and thermally developing region in the rectangular channel. This study is expected to provide valuable reference for designing future liquid metal based mini-channel heat exchanger.

关键词: heat exchanger     liquid metal     mini-channel     heat dissipation     heat transfer coefficient    

Conversion of CO into CO by high active and stable PdNi nanoparticles supported on a metal-organic framework

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1139-1148 doi: 10.1007/s11705-021-2111-5

摘要: The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd+ Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution of PdNi nanoparticles, and lower dissociation and desorption barriers. Comparison of the catalysts synthesized by MIL-101(Cr) and MIL-101-NH2(Cr) as the supports of metals showed that Pd/MIL-101-NH2(Cr) outperforms Pd/MIL-101-(Cr) because of the higher electron density of Pd resulting from the electron donor ability of the NH2 functional group. However, the same activities were observed for Pd70Ni30/MIL-101(Cr) and Pd70Ni30/MIL-101-NH2(Cr), which is due to a less uniform distribution of Pd nanoparticles in Pd70Ni30/MIL-101-NH2(Cr) originated from amorphization of MIL-101-NH2(Cr) structure during the reduction process. In contrast, Pd70Ni30/MIL-101(Cr) revealed the stable structure and activity during reduction and CO oxidation for a long time.

关键词: CO oxidation     heterogeneous catalysis     metal-organic framework     NH2 functional group     PdNi    

Metal-based direct hydrogen generation as unconventional high density energy

Shuo XU, Jing LIU

《能源前沿(英文)》 2019年 第13卷 第1期   页码 27-53 doi: 10.1007/s11708-018-0603-x

摘要: Metals are unconventional hydrogen production materials which are of high energy densities. This paper comprehensively reviewed and digested the latest researches of the metal-based direct hydrogen generation and the unconventional energy utilization ways thus enabled. According to the metal activities, the reaction conditions of metals were generalized into three categories. The first ones refer to those which would violently react with water at ambient temperature. The second ones start to react with water after certain pretreatments. The third ones can only react with steam under somewhat harsh conditions. To interpret the metal-water reaction mechanisms at the molecular scale, the molecule dynamics simulation and computational quantum chemistry were introduced as representative theoretical analytical tools. Besides, the state-of-the-art of the metal-water reaction was presented with several ordinary metals as illustration examples, including the material treatment technologies and the evaluations of hydrogen evolution performances. Moreover, the energy capacities of various metals were summarized, and the application potentials of the metal-based direct hydrogen production approach were explored. Furthermore, the challenges lying behind this unconventional hydrogen generation method and energy strategy were raised, which outlined promising directions worth of further endeavors. Overall, active metals like Na and K are appropriate for rapid hydrogen production occasions. Of these metals discussed, Al, Mg and their alloys offer the most promising hydrogen generation route for clean and efficient propulsion and real-time power source. In the long run, there exists plenty of space for developing future energy technology along this direction.

关键词: metal     hydrogen generation     hydrolysis     metal water reaction     clean energy    

Remediation of arsenic contaminated soil by sulfidated zero-valent iron

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1377-z

摘要:

• Sulfidation significantly enhanced As(V) immobilization in soil by zerovalent iron.

关键词: Soil     As(V)     Sulfidation     Zero-valent iron     Magnetic separation    

Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1388-4

摘要:

• Biochar enhanced the mobility and stability of zero-valent iron nanoparticles.

关键词: Nano zero-valent iron     Biochar     BDE209     Transport     Soil    

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

《能源前沿(英文)》 2023年 第17卷 第5期   页码 569-584 doi: 10.1007/s11708-023-0875-7

摘要: Lithium (Li) metal is believed to be the “Holy Grail” among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity (3860 mAh/g) and lowest redox potential (−3.04 V). Disappointingly, uncontrolled dendrite formation and “hostless” deposition impede its further development. It is well accepted that the construction of three-dimensional (3D) composite Li metal anode could tackle the above problems to some extent by reducing local current density and maintaining electrode volume during cycling. However, most strategies to build 3D composite Li metal anode require either electrodeposition or melt-infusion process. In spite of their effectiveness, these procedures bring multiple complex processing steps, high temperature, and harsh experimental conditions which cannot meet the actual production demand in consideration of cost and safety. Under this condition, a novel method to construct 3D composite anode via simple mechanical modification has been recently proposed which does not involve harsh conditions, fussy procedures, or fancy equipment. In this mini review, a systematic and in-depth investigation of this mechanical deformation technique to build 3D composite Li metal anode is provided. First, by summarizing a number of recent studies, different mechanical modification approaches are classified clearly according to their specific procedures. Then, the effect of each individual mechanical modification approach and its working mechanisms is reviewed. Afterwards, the merits and limits of different approaches are compared. Finally, a general summary and perspective on construction strategies for next-generation 3D composite Li anode are presented.

关键词: lithium (Li)-ion battery (LIB)     Li metal battery     three-dimensional (3D) composite Li metal anode     mechanical modification     reducing local current density    

Degradation of chlorinated phenols by nanoscale zero-valent iron

CHENG Rong, WANG Jianlong, ZHANG Weixian

《环境科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 103-108 doi: 10.1007/s11783-008-0009-9

摘要: Chlorophenols (CPs), as important contaminants in groundwater, are toxic and difficult to biodegrade. Recently nanoscale zero-valent iron received a great deal of attention because of its excellent performance in treating recalcitrant compounds. In this study, nanoscale zero-valent iron particles were prepared using chemical reduction, and the reductive transformations of three kinds of chlorinated phenols (2-CP, 3-CP, and 4-CP) by nanoscale zero-valent iron under different conditions were investigated. The transformation process of the CPs was shown to be dechlorination first, then cleavage of the benzene ring. The removal efficiency of the CPs varied as follows: 2-CP > 3-CP > 4-CP. The reactivity of CPs was associated with their energy of lowest unoccupied molecular orbit (). With the increase in initial concentrations of CPs, removal efficiency decreased a little. But the quantities of CPs reduced increased evidently. Temperature had influence on not only the removal efficiency, but also the transformation pathway. At higher temperatures, dechlorination occurred prior to benzene ring cleavage. At lower temperatures, however, the oxidation product was formed more easily.

标题 作者 时间 类型 操作

Product identification and toxicity change during oxidation of methotrexate by ferrate and permanganate in water

期刊论文

Nanoscale Zero-Valent Iron (nZVI) for Heavy Metal Wastewater Treatment: A Perspective

Shaolin Li,Lei Li,Weixian Zhang,

期刊论文

Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese

YANG Shengxiang,LIANG Shichu,YI Langbo,XU Bibo,CAO Jianbing,GUO Yifeng,ZHOU Yu

期刊论文

Localized high-concentration electrolytes for lithium metal batteries: progress and prospect

期刊论文

Species distribution of arsenic in sediments after an unexpected emergent discharge of high-arsenic wastewater

Ruiping LIU, Wei XU, Kun WU, Wenxin GONG, Huijuan LIU, Jiuhui QU

期刊论文

Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling

Yuling CAI,Bin LIANG,Zhanqiang FANG,Yingying XIE,Eric Pokeung TSANG

期刊论文

High heat flux thermal management through liquid metal driven with electromagnetic induction pump

期刊论文

wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under highmetal loading conditions

Mothe Gopi Kiran, Kannan Pakshirajan, Gopal Das

期刊论文

Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic

Manli LUO, Jing LIU

期刊论文

Conversion of CO into CO by high active and stable PdNi nanoparticles supported on a metal-organic framework

期刊论文

Metal-based direct hydrogen generation as unconventional high density energy

Shuo XU, Jing LIU

期刊论文

Remediation of arsenic contaminated soil by sulfidated zero-valent iron

期刊论文

Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil

期刊论文

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

期刊论文

Degradation of chlorinated phenols by nanoscale zero-valent iron

CHENG Rong, WANG Jianlong, ZHANG Weixian

期刊论文